FIRE & FUELS MONITORING

The Need for Monitoring

The public is holding Resource Managers increasingly accountable, and Federal / State agencies are instituting progressively more stringent guidelines for burning, monitoring, and smoke management.

Objectives for Unit 1

This unit will provide an overview for:

- Identify needs & develop goals / objectives
- Develop standards & protocols for data collection, recording, and archiving
- Implementation
- Compiling results

The Process

Goals and Objectives

Monitoring programs should have guiding goals and objectives.

Each project may have individual protocols based on the goals and objectives of each burn unit.

Monitoring Objectives and Protocols

What are your goals of your prescribed burns or managed fire?

What are the objectives of your prescribed burns or managed fire?

What do you need to measure to quantify your objectives?

How much time do you have to dedicate to monitoring?

- a) Little time (less than 2 hours / burn unit) and / or a small work force (1 or 2 people).
- b) A moderate amount of time (3 to 6 hours / burn unit) and / or a moderate work force (3-4 people).
- c) Can dedicate significant time and resources to monitoring.

What is the average size of your burn units?

- a) Relatively small (less than 20 acres).
- b) Moderate size (20-100 acres).
- c) Large burn units (100-500 acres).
- d) Landscape level (500+ acres).

What is the return interval for burning?

- a) 1-3 years
- b) 3-7 years
- c) 7-12 years
- d) 12+ years

Is seasonality a factor? Such as; measurement are based on phenology, or growing season....

What are you going to measure for?

- Fuel loading
- Duff / litter
- Fire severity
- Surface fire behavior potential
- Photo series
- Mortality / snag creation
- Crown scorch
- Bole char / char depth
- Crown bulk density
- Soils / carbon content
- Vegetation Mapping
- Fire behavior
- Smoke
- Invasive or endangered species

Developing a Standardized System

- Fire Monitoring Handbook. USDI National Park Service. 2003
- <u>http://www.nps.gov/fire/dow</u>
 <u>nload/fir_eco_FEMHandbook</u>
 <u>2003.pdf</u>
- It is important that the data collection and analysis is standardized and consistent.

DEVELOPING PROTOCOLS

After arriving at plot center, record the coordinates in either lat/long or UTM with the GP5. Also note the stand and compartment information (Figure 1). Fill in the header.

If wearing an analog watch, the azimuth of the 1sttransect is chosen by the direction of the minute hand. A random azimuth for the 1st transect can be selected by choosing a number between 0 and 360. The other 3 transects are laid out clockwise at 90° angles from the previous transect 1st transect = 161°, 2rd = 251°, 3rd = 341°, 4^{ch} = 71° (Figures 2 and 3). A random number generator has been provided (Table 1).

Place a permanent marker (stake, wire flag) at plot center. Measuring taper should be laidout to 50' from plot center.

Record the length of transects for time lag fuels.

Transect lengths	Diameter of debris				
Downed material	0-1 in	1-3 in	>3 10		
Nonslash (naturally fallen material)	6 '	10-12	35-50		
Discontinuous light slash	6 '	10-12	35-50		
Continuous heavy slash	3	6	15-25		

Record the azimuth and slope for each transect.

Record the number of intercepts for each time lag fuel class.

For the 1000+ fuels, a diameter and species is recorded for each intercept. The 1000+ fuels are also classified as "sound" or "rotten" and recorded in the appropriate column. If a species, cannot be identified, note pine or hardwood.

Tally rules for fuel classes:

 Only downed, dead woody material from trees and shrubs on the litter layer are recorded. Do not record:

Leaves cones bark flakes needles grass forbs undisturbed stumps dead stems or branches still attached to standing trees or shrubs 2. Only record the 1-, 10-, and 100-hf fuels along the prescribed length of the transect (1-

- Only record the 1-, 10-, and 100-hr fuels along the prescribed length of the transect (1hr from 0-6 ').
- 3. If a piece intersects the tape measure more than once, count all intercepts.
- 4. If the end of a piece intersects the taper, only record it if the central axis is crossed.
- Estimate the diameter of rotten logs that fallen apart by visualizing a cylinder to contain the material.
- Downed material can be sample up to any height, so be sure to look up from the ground. An upper cutoff of 6 ' can be used; adjust as necessary in heavy slash.
- 7. Record diameters of 1000+ fuels to the nearest whole inch.

Plot ID: Coordinates					B/C (Circ	le On	e) Da	te:	1	1	
Burn Unit:											
Transect lengths, in feet: 0025"0.25-1"1-3"3+s3+r											
Transect 1	#	of interce	pts	Diame	ter (in)		Litter	and Du	ff Dep	ths (in)	
Azimuth Slope	025″	.25-1″	1-3″	3+s	3+r						
%	(1-hr)	(10hr)	(100hr)	(100	0hr)		L	D		L	D
						1			25		
						5			30		
						10			35		
						15			40		
						20			45		

Litter and duff are also recorded at set intervals along the length of each transect (Figure 4).

The first measurement is taken 1 foot from the plot center and the next at the 5' mark. After that measurements are taken every 5 feet, ending at the 45' mark.

Tally rules for litter and duff:

- 1. Record duff and litter measurements after fuel intercepts have been tallied.
- 2. Record litter to the nearest whole inch.
- 3. Measure duff to the nearest 0.1 inch or .25 inch (depending on ruler used).
- 4. Litter is still recognizable as its former self before death (it still looks like a needle).
- 5. Duff is the decomposed litter (it is no longer recognizable as a needle).
- When stumps, logs and trees occur at the points of measurement, offset 1 ' perpendicularly to the right.
- 7. Measure through rotten logs whose central axis is in the duff layer.

There are many versions of transect size & shape, but the importance is consistency.

Plot Measurement Schedule and Frequency

It is helpful to have dedicated equipment for data collection.

Equipment needed:

Permanent stakes (1 for each plot)	50' measuring tapes (in tenths of a foot)
GPS	Compass
Rulers	Plot data sheets & clip board
Tablet or phone w/ charger or	Pen / pencils
battery pack	
DBH tape	Camera or tablet for photo plots
Coordinates of plots	Plastic bags for plant collection
Fuels Go-No-Go gauge	10 or 20 basal area prism
flagging	Water / radio/ food / clothes

Equipment Optional:

Soil Sampling Tube	Hori Hori Knife
Densitometer	Increment Borer
Tree Caliper	Chaining Pins
Inclinometer (laser ones a nice)	Photo Scale
Duff Pins	

- The forms can be found in the Fire Monitoring Handbook.
- It is important to have a central archiving location.
- Some Software that is helpful for storing and reporting the data:
- 1. <u>Firemon</u>
- 2. FSVeg
- 3. <u>Fuel Characteristic</u> <u>Classification</u> <u>System</u>
- Develop a spread sheet.
 <u>example</u>

CANOPY BULK DENSITY PLOT

DATE ENTERED: __/_/___ ENTERED BY: ____

RECORDING & ARCHIVING

IMPLEMENTATION WITH LIMITED BUDGET AND TIME

- Look into working with universities or other agencies to help collect data.
- ★ Compare limited data to other nearby agencies, FCCS, or FEIS ~
- **×** Reduce the number of control plots.
- **x** Concentrate on 2 or 3 projects that represent a larger area.
- **×** Bring in a Wildland Fire Module.

Photo Plots

MEMORABLE UNIT 1 PLOT 3 05/12/2005 TREPRISECT 2 POST BURN (2WKS) FILST MET MILL (2004 BURN 4/50/2005

Pre Burn

Post Burn

Collecting Burn Day Data

DATE	Burn Name	Time of Burn	Day of Last Rain	Rain (in)	Temp (F)	Rh %	Wind Spd	Wind Dir	F.L. (ft)	R.O.S (ft/min)	Notes	Acres	Est. Mortality
4/14/2004	Chambers	1515-1900			48-56	31-42	3 to 6	E,SE	13	24	Opening with red pine oak.	34	<1/2%
10/12/2004	N. Memorable unit 3	16:00-18:00	10/9/04 (3)	0.07	65-56	52-66	15	SE, S	14	0.5-1	Stopped for wildfire	40	avr. 3.6%
4/9/2005	N. Memorable unit 3	17:30-19:30	4/7/05 (2)	0.08	55-66	33-48	07	SE, SW	15	12	Stopped for 12 hour rule / Slight lake wind	62	avr. 3.6%
4/16/2005	N. Memorable unit 2	17:00-20:00	4/7/05 (9)	0.08	63-71	29-33	15	SE, SW	15	0.5-1	Small crown fire developed	50	avr. 3.6%
4/21/2005	Little Bluestem	17:30-19:00	04/21/05 (0)	0.57	51-53	31-33%	2 to 4	E-SE	.5-3	1	L		N/A
4/30/2005	N. Mem. Unit 1 & 2	14:00-17:30	4/28/05 (2)	0.09	50-53	37-47	07	SE, S	16	0.5-1	Great results / Hand ignition	195	avr. 3.6%
5/17/2005	Rich Rd.	13:00-21:00	5/15/05 (2)	1.8	54-62	32-49	47	W <i>,</i> S, SE	16	12	Hand ignition.	650	< 2%
4/8/2006	Davis Unit 1	17:00-21:00	4/6/06 (2)	0.4	47-65	39-64	513	E, SE	13	13	Hand ignition.		< 1/2%
4/17/2006	Davis Unit 2	15:00-19:00	4/14/06 (3)	0.22	37-41	40-51	810	NW	13	13	Cool and Cloudy. Hand ignition.		< 1/2%
4/10/2007	Hoist	1630-1800	04/05/07 (5)	0.35	39-43	52-56	29	s,e,ne	28	15	Snow in the woods, small slop- over	80	< 1/2%

unfavorable results / higher than desired fire behavior

Desired fire behavior / results

Less than desired fire behavior / results

Q:/FIRE/Fuels Management/Fire Monitoring\monitoring results\Plot Data

results and measuring significance	10 14 12 10 10 10 10 10 10 10 10 10 10	Burn + 1 Burn + 4 2010 PostBurn	2nd Burn+3 2016 PostBurn	 Total Heavy Total Litter/Duff Grand Total Total Fine 		
		Pre-Burn				1 and
	Blk 4	Blk 10	Ave			
Litter loading	7.297	9.035	8.166			
Duff loading	6.882	11.426	9.154		-	
		Post-Burn		210 -		- 72
Litter loading	1.992	1.485	1.739			
Duff loading	4.206	8.475	6.341			

Memorable North Fuel Loading

- Measuring short ٠ term change and long term change
- Statistical • accuracy
- Interpreting the •

18

10

Results

Project Litter / Duff Depth

1

inches

Post-Burn

Pre-Burn

2

Duff depth

Litter depth

0

Averages For Post Burn Tree Mortality

Burn Unit	Mortality	197
Brittle 1	0.5%	10
Brittle 2	0.5%	
Brittle 3	1.50%	
Brittle 4	0.5%	
Brittle 5	0.5%	
Brittle 6	1%	
Brittle 9 (Crown Fire)	18%	A PA
Brittle 10	2%	
Brittle 12 (head fire)	2%	
Mem North	4.70%	10
Mem Mid.	0.50%	
Mem South (head fire)	3.40%	ZK
Ave.	2.92%	R

Project Name	Mem	orab	le N	North	Memorable South			
	2005	201	10	2013	2007	2013		
Total Pre Rx dead tree %	5.3%				6.2%			
Average live BA	118				111			
Average DBH (in)	11.2 11		.3	11.3	10.7	10.7		
Total acres		347			459			
Total number plots	30		10		29	10		
Acres/plot	10.5			35	15.8	45.9		
Harvest related mortality	3.4		N/A		3.1	N/A		
Rx Mortality %	3.6%	4.7	%	<1/2%	< 1/2%	3.4%		
Total dead /acre	9.4	9.:	5	9.5	7.1	8.9		

FUELS MAPPING

- Fire behavior modeling
- Tracking changes in fuel models

Burn Severity Mapping

Author: Brian Stearns

Date: Jan 28 2011 - 12:51 AM

Fuelbed Name: Red pine -- pin oak Brittle with Slash

Fuelbed Number: N/A

File Name: C:\FCCS\conf\fuelbeds\user_fuelbeds\Brittle_slash.xml

Data quality ranking:

Original FBPS fuel model (13)*: 9

Standard fuel model (40)*: TU2

Description: Red pine plantation that were typically planted in the 1930's & 40's. Dense stands on poor sandy soils.

Surface Fire Behavior Potential	6	Summary surface fire behavior potential, calculated as the maximum of spread potential and flame length potential scaled to an index between 0-9.
Reaction Potential	4.9	Approximates the potential reaction intensity (energy released per unit area and time).
Spread Potential	5.6	Proportional to the no-wind rate of spread in surface fuel (distance per unit time).
Flame Length Potential	3.8	Proportional to fireline intensity or flame length.
Crown Fire Potential	5	Weighted average of crown fire subpotentials.
Crown fire initiation potential	4.3	Potential for fire to reach canopy layer.
Crown-to-crown transmissivity potential	8.8	Potential for fire to carry through a canopy.
Crown fire spreading potential	3.3	Relative index of crown fire rate of spread.
Available Fuel Potential	3	Sum of fuel loadings in all combustion phases scaled to an index between 0-9.
Flame available fuel potential	1.9	Sum of fuel loadings available for the flaming phase of combustion (in units of 10 tons/acre).
Smoldering available fuel potential	1.2	Sum of fuel loadings available for the smoldering phase of combustion (in units of 10 tons/acre).
Residual Available Fuel	0.2	Sum of fuel loadings available for the residual smoldering phase of combustion (in units of 10 tons/acre).
FCCS Fire Potential Code	653	Three-digit code representing the surface fire behavior, crown fire, and available fuel potentials.
"Based on dry fuel conditions (D2L	2 moisture scenario)	FCCS v 2.1

Fuel Potential for Brittle (Pre and Post-Burn)

			Crown Fire		
Fuel bed	Fuel Model	Surface Fire Potential (1-9)	Initiation Potential (1-9)	Available Fuel Potential (1-9)	FCCS Fire Potential Code
		• •			
Opening in Brittle Pre-burn	TU2	5	6	4	564
Opening in Brittle Post-burn	TU2	6	4	2	642
Red Pine-Oak Brittle pre-burn	TL9	6	5	3	653
Red Pine-Oak Brittle post-burn	TL8	5	4	2	542
Red Pine with slash pre-burn	SB2	6	7	3	673
Red Pine with slash post-burn	TL8	5	4	2	542
Red Pine with Aspen pre-burn	TL6	4	5	3	453
Red Pine with Aspen post-burn	TL5	4	4	2	442

FIRE

USING THE RESULTS

Average Crown Scorch	Average DBH	Average Tree Height
11.40%	11.06	39.4

Height

- × Fuel loading
- × Prescriptions
- Return interval measurements
- Fuel specialist reports
- × Litigation
- Fire behavior fuel modeling (Scott & Burgan or custom)

Questions?

